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Abstract

In this paper, a method for crack identification in plates based on wavelet analysis is presented. The case
of an all-over part-through crack parallel to one edge of the plate is considered. The vibration modes of the
plate are analyzed using the continuous wavelet transform and both the location and depth of the crack
are estimated. The position of the crack is determined by the sudden change in the spatial variation of the
transformed displacement response. To estimate the depth of the crack, an intensity factor is defined which
relates the depth of the crack to the coefficients of the wavelet transform. An intensity factor law is
established which allows accurate prediction of crack depth. The viability of the proposed approach is
demonstrated using simulation examples. In view of the obtained results, the advantages and limitations of
the proposed approach as well as suggestions for future work are presented and discussed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Because of its practical importance, crack identification in structures has been the subject of
intensive investigations during recent decades. As a result, a plethora of analytical, numerical and
experimental research work now exists. In this connection, vibration analysis has been proved a
fast and inexpensive method for effective crack identification. A review of the state of the art of
vibration-based methods for testing cracked structures has been published by Dimarogonas [1].
The existence of a crack in a structure results in a reduction of stiffness which in turn leads to a

decrease in natural frequencies and changes in the mode shapes of vibration. An analysis of these
changes makes it possible to identify cracks. Dimarogonas [2] and Anifantis et al. [3] modelled the
crack as a local flexibility and computed the equivalent stiffness using fracture mechanics
methods. In that vein, they developed methods to identify cracks in beams relating crack depth to
the change in natural frequencies [4,5] Adams and Cawley [6] have developed an experimental
technique to estimate the location and depth of a crack from changes in natural frequencies.
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Further research work on crack identification via natural frequency changes was done by
Massoud et al. [7] and Narkis [8]. A variational approach to the problem of cracked beams has
been used by Chondros et al. [9]. They developed a continuous vibration theory of cracked
Bernoulli–Euler beams and they reported results for the variation of the fundamental frequency of
a simply supported cracked beam. The methodology of crack detection based on natural
frequency changes has been also closely followed in studies of multicracked beams, including
those by Shen and Pierre [10], Ruotolo et al. [11], Sekhar [12] and Schifrin and Ruotolo [13].
The main reason for the popularity of natural frequencies as a damage indicator is that natural

frequencies are rather easy to determine with a high degree of accuracy. Problems exist, however,
when the size of the crack is small. The existing methods give a proper estimation of moderate
cracks (about 20% of the height of the beam).
The idea of using mode shapes as a crack identification tool is the fact that the presence of a

crack causes changes in derivatives of the mode shapes at the position of the crack. Rizos et al.
[14], for example, suggested a method for using measured amplitudes of a cantilever beam
vibrating at one of its natural modes to identify crack location and depth. To get accurate
estimates of the mode shapes, however, one needs detailed measurements at the site of interest.
This fact increases considerably the duration of the investigation and this is the main disadvantage
of using mode shapes for crack identification.
Vibration analysis has been mainly concentrated on crack detection in beam structures. The

vibrational behaviour of cracked plates has been also studied with no emphasis, however, on
crack detection. Lee [15] used the Rayleigh–Ritz method to obtain fundamental frequencies of
annular plates having internal concentric cracks. Lee and Lim [16] have investigated the
vibrational behaviour of a rectangular plate with a centrally located crack. Finite element
methods have also been used for vibration analysis of damaged rectangular plates [17,18].
Recently, Khadem and Rezaee [19] developed an analytical approach for crack detection in
rectangular plates. The flexibility of the crack was modelled as a line spring with varying stiffness
along the crack. The obtained results show that moderate cracks have a minor effect on the
natural frequencies of the cracked plate making an accurate crack detection difficult. To improve
the accuracy of their analysis, the authors used modified comparison functions for the prediction
of natural frequencies in case of a plate with a crack of arbitrary length [20].
In the light of the above discussion, it is obvious that the literature on crack detection, both in

beams and plates, has been so far dominated by studies based on methods that utilize natural
frequency changes. Having in mind that small cracks have a minor effect on natural frequencies of
a plate, more sensitive methods capable of detecting small changes become important. Recently,
methods based on wavelet analysis are emerging and become a promising damage detection tool
[21,22]. The advantage of wavelet analysis is that it breaks down a signal in a series of functions
(wavelets) and allows the identification of local features from the scale and position of wavelets.
The signal for example can be the displacement over a region of interest for a structure. Using the
wavelet transform, the local features in a spatially distributed structural response signal can be
identified with a desired resolution.
Liew and Wang [23] introduced the application of wavelet theory for crack identification in

structures. They considered a simply supported beam containing a transverse crack and used a
finite difference scheme to calculate the deflection of the beam. In order to determine the location
of the crack by wavelet transforming the deflection data they had to use an initial displacement to
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excite the beam. Deng and Wang [24] applied directly the discrete wavelet transform to structural
response signals to locate a crack along the length of a beam. Quek et al. [25] used also wavelet
analysis for crack identification in structures. The authors were able to accurately detect small
cracks in beams under both simply supported and fixed–fixed boundary conditions. In all the
above-mentioned work, however, no attempt was made to estimate the size of the crack. Hong
et al. [26] used the Lipschitz exponent for the detection of singularities in beam modal data. The
Mexican hat wavelet was used and the damage extent has been related to different values of the
exponent. The correlation, however, of the damage extent to the Lipschitz exponent is sensitive to
both sampling distance and noise resulting in limited accuracy of the prediction. Wang and Deng
[27] extended the use of wavelet analysis to a cracked plate with a through-thickness crack. The
investigation, however, was limited to crack localization.
In the present work, a method for crack identification in plate structures based on wavelet

analysis is presented. The vibration modes of a plate having an all-over part-through crack
parallel to one edge are wavelet transformed and both the location and depth of the crack are
estimated. For this purpose, a ‘‘symmetrical 4’’ wavelet having two vanishing moments is utilized.
The position of the crack is estimated by the variation of the spatial response signal along a line
vertical to the crack due to the high resolution property of the wavelet transform. To estimate the
depth of the crack an intensity factor is defined which relates the depth of the crack to the
coefficients of the wavelet transform. An intensity factor law is established which allows accurate
prediction of the crack depth. The feasibility of the proposed approach is demonstrated through
simulation examples which involve plates with all-over part-through cracks of varying depths at
different locations. In view of the obtained results, the advantages and limitations of the proposed
method as well as suggestions for future work are presented and discussed.

2. Wavelet transform

In this section a brief introduction of the relevant wavelet theory is presented. A more detailed
analysis can be found in Refs. [28,29]. Subsequently, the practical way of how the wavelet
transform will be used in the present work for crack identification in plates is described.

2.1. Fundamentals

A wavelet is a function with two important properties: oscillation and short duration.
A function cðxÞ is a wavelet if and only if its Fourier transform CðoÞ satisfiesZ þN

�N

jCðoÞj2

joj2
dooþN ð1Þ

This condition implies that Z þN

�N

cðuÞ du ¼ 0; ð2Þ

meaning that a wavelet is an oscillating function with zero mean value. For practical purposes it is
also required the wavelet to be concentrated in a limited interval ½�K ;K�; or in other words have
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compact support. Although wavelets are usually used to analyze signals in the time domain,
spatially distributed signals can be equally analyzed by wavelets. The continuous wavelet
transform of a function f ðxÞ; is defined as

Wf ðu; sÞ ¼
1ffiffi

s
p Z þN

�N

f ðxÞc�
x � u

s

� �
dx; ð3Þ

where c�ðxÞ is the complex conjugate of the wavelet function. In translating Eq. (3) one might
recognize the inner product of f ðxÞ with scaled and translated versions of the original wavelet
function. Large values of scale s correspond to big wavelets and thus coarse features of f ðxÞ; while
low values of s correspond to small wavelets and fine details of f ðxÞ: This inner product is carried
out for all times so that the one-dimensional function f ðxÞ is transformed into a two-parameter
function Wf ðu; sÞ; so that useful information about the function analyzed will be revealed.
An important property of the wavelet transform is its ability to react to subtle changes of the

signal structure. To point this out, suppose that the wavelet used is the derivative of a continuous
function fðxÞ usually called the scaling function, i.e., cðxÞ ¼ dfðxÞ=dx: The wavelet transform can
be written as

Wf ðu; sÞ ¼
1ffiffi

s
p Z þN

�N

f ðxÞ
d

du
f�

x � u

s

� �
dx ¼

d

du

1ffiffi
s

p Z þN

�N

f ðxÞf�
x � u

s

� �
dx

( )
: ð4Þ

The continuous wavelet transform is proportional to the first derivative of f ðxÞ smoothed by the
function fðxÞ: In an analogous way, wavelets that are higher derivatives of a smoothing function
can be constructed. The wavelet transform coefficients will be proportional to a smooth version of
the second, third or higher derivatives of the signal, respectively. This means that it is possible to
examine different rates of change of the signal for all scales of interest allowing a completely local
or less local feature extraction procedure.
Of particular importance are the local maxima of jWf ðu; sÞj which, as explained above, are the

local maxima of the derivative of f ðxÞ smoothed by fðxÞ: Mallat and Hwang [30] connected the
regularity of a function at a point x ¼ xo with the decay of the local maxima of the wavelet
modulus across scales. To detect singularities one has to examine the asymptotic decay of wavelet
modulus maxima in a cone jx � xojoe; where e > 0 is arbitrarily small, as s tends to zero. If the
coefficients decay at some rate as the scale decreases to zero, then xo is a singular point of f ðxÞ:
Traditionally, the regularity of a function at a point of time or space has been characterized by

its Hoelder exponent. More specifically, for an isolated singularity, i.e., non-oscillating
singularity, the wavelet transform modulus maxima satisfy

jWf ðu; sÞjpAs hþ1=2; ð5Þ

where A is a constant and h is the Hoelder exponent. The Hoelder exponent gives information
about the differentiability of a function. For example, if the value of the exponent is 1.5 at a point
xo; the function f ðxÞ is one time differentiable but not two times differentiable. The greater the
value of the Hoelder exponent, the more regular is the function at this point. If an exponent h is
assigned to an isolated singularity at point xo then it is possible to interpolate all points of the
function close to xo with a curve of the form xh: A practical way to calculate the Hoelder exponent
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is obviously by rewriting Eq. (5) in the form

log2ðjWf ðu; sÞjÞplog2ðAÞ þ ðh þ 1=2Þ log2ðsÞ: ð6Þ

By keeping the equality sign and plotting the coefficients on a logarithmic scale, A and h are
calculated so as the error is minimized in the least-squares sense. Eq. (6) forms the basis of the
proposed method for crack identification in plates.

2.2. Wavelet transform as crack identification tool

In order to apply the wavelet transform as a crack identification tool, it is important to clarify
the role of the parameters A and h in Eq. (6). The Hoelder exponent h describes the type of a
singularity. A Dirac delta function, for example, is Hoelder �1 at x ¼ 0: For isolated singularities,
one loses one degree of regularity by differentiation and gains one degree of regularity with
integration. Thus, a step function discontinuity is described by a Hoelder exponent of h ¼ 0; as it
is the time derivative of a Dirac delta function. Assume next that all singularities in a signal are of
the same type, say for convenience they resemble a step function. In this case, all singularities are
characterized by the same exponent. Each singularity, however, might be discriminated from its
relative magnitude which is described by the change of constant A: Therefore, constant A can be
considered as an intensity factor, i.e., a measure of the severity of a singularity.
To make the described concepts clear, consider a signal with a discontinuity of constant

magnitude obeying different laws (Fig. 1). First, the continuous wavelet transform is computed
and log jWf ðu; sÞj versus logs is plotted in Fig. 2. It is obvious that the value of exponent h

decreases as the singularity becomes more steep. For example, h ¼ 0:126 for the steepest law x0:1;
while h ¼ 0:798 for the law x0:8:
Next, the power of x is kept at a constant value 0:5 ðh ¼ 0:507Þ and the magnitude of the

singularity is varied from 0.01% to 0.2% (Fig. 3). The corresponding wavelet coefficients versus
scale are shown in Fig. 4. The wavelet coefficients are parallel lines (constant h) and only the value
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of A changes. The value of constant A increases with increasing singularity magnitude. Therefore,
constant A can be considered as an intensity factor relating the wavelet coefficients to the
magnitude of the singularity. In a practical application of Eq. (6) for crack identification, the slope
h and constant A should be determined by wavelet transforming the response signal of the
structure and the size of the damage can be estimated via constant A provided that a link of A to
crack size has been established. This procedure will be illustrated in a subsequent section with the
help of numerical examples.
Finally, the choice of the analysing wavelet is left to be discussed. In practice, wavelets of higher

number of vanishing moments give higher coefficients and more stable performance. On the other
hand, one should bear in mind that the effective support of a wavelet increases with the number of
vanishing moments. Therefore, a compromise between the number of vanishing moments and
adequate localization should be accomplished. Good candidates can be considered the

ARTICLE IN PRESS

1 2 3 4

  -14 

 -13

 -12

  -11 

 -10

Log2(scale)

 L
o

g
2(

 |W
 f

(u
,s

)|
 ) (a)

(b)

(c) 

(d)

Fig. 2. Wavelet maxima versus scale of the functions shown in Fig. 1. (a) x0:1; h ¼ 0:126; (b) x0:3; h ¼ 0:314;
(c) x0:5; h ¼ 0:507; (d) x0:8; h ¼ 0:798:

0 200 400 600 800 1000

 1

1.001

1.002

Sample number

 A
m

p
lit

u
d

e

 0.01%

0.05%

 0.1%

 0.2%

Fig. 3. Functions with an isolated singularity of increasing magnitude obeying the law x0:5:

E. Douka et al. / Journal of Sound and Vibration 270 (2004) 279–295284



‘‘symmetrical 4’’ wavelet with 4 vanishing moments and a support length of 7, the ‘‘coiflet 2’’
wavelet with 4 moments and a support length of 11 and the ‘‘biorthogonal 6.8’’ with 5 moments
and a support length of 13 (see Fig. 5). After some experimentation the ‘‘symmetrical 4’’ wavelet
has been chosen and used as analysing wavelet throughout the present work.
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3. Vibration model of a cracked plate

An elastic rectangular plate of size a 	 b and thickness H with an all-over part-through crack
running parallel to one side of the plate is considered, as shown in Fig. 6. The crack has a uniform
depth l and is considered to be open. A hypothetical boundary along the crack divides the plate
into two segments (1) and (2). This model has been analyzed in detail in Ref. [19]. Here, only the
basic lines of the analysis are briefly presented for clarity. Considering only bending vibrations,
the flexibility of the crack is modelled by calculating the slope discontinuity along the crack as

y ¼ ð12ð1� n2Þ=EÞsbabb; ð7Þ

where E is Young’s modulus, n is the Poisson’s, ratio and sb is the nominal bending stress due to
bending moments. The compliance coefficient abb; characterizing the crack is given by the
following equation:

abb ¼
1

H

Z l

0

g2b dl; ð8Þ

where gb is a dimensionless function of the relative crack depth x ¼ l=H defined as

gb ¼ x1=2ð1:99� 2:47xþ 12:97x2 � 23:11x3 þ 24:80x4Þ: ð9Þ

The nominal stress sb; expressed in terms of the lateral deflection w; takes the form

sb ¼
�EH

2ð1� n2Þ
@2w

@y2
þ n

@2w

@x2

� 	
: ð10Þ

By substituting Eq. (10) into Eq. (7) and using dimensionless space variables z ¼ x=a and
Z ¼ y=b the slope discontinuity at both sides along the hypothetical boundary at Z ¼ Z0 is
expressed as

yjZ¼Z0 ¼
�6H

b

@2w

@Z2
þ nf2

@2w

@z2

� 	
abbjZ¼Z0 ; ð11Þ

where f ¼ b=a is the plate aspect ratio.
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The governing equation of the free vibration of a plate is

�Dr4w ¼ Mð@2w=@t2Þ; ð12Þ

where wðx; y; tÞ is the transverse deflection, r4 is the biharmonic operator, M is the mass per unit
area and D ¼ EH3=12ð1� n2Þ is the flexural rigidity.
Letting

wðx; y; tÞ ¼ W ðx; yÞ expðiotÞ: ð13Þ

the time dependence can be eliminated so as to obtain

r4W � ðMo2=DEÞW ¼ 0: ð14Þ

Utilizing Levy’s method for a plate simply supported at the two opposite sides x ¼ 0 and a

(i.e., z ¼ 0 and 1), the shape function in terms of the dimensionless space variables ðz; ZÞ takes the
form

W ðz; ZÞ ¼
XN¼1

m¼1

YmðZÞ sinðmpzÞ: ð15Þ

Substitution of Eq. (15) into Eq. (14) leads to an ordinary differential equation for Ym; which has
as its general solution

YmðZÞ ¼ Am coshðbmZÞ þ Bm sinhðbmZÞ þ Cm sinðgmZÞ þ Dm cosðgmZÞ; ð16Þ

with

bm ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ðmpÞ2

q
; lm ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � ðmpÞ2

q
; l2 ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
M=D

p
: ð17Þ

Here o is the natural circular frequency of the cracked plate and Am � Dm are arbitrary constants.
The form of Eq. (16) holds for the range of l2 > ðmpÞ2 however, a similar solution can be obtained
for the case l2oðmpÞ2:
The cracked plate is considered to be simply supported at all four edges. Because of the form of

solutions the boundary conditions at z ¼ 0 and 1 are automatically satisfied. The other boundary
conditions to be considered are applied at the edges Z ¼ 0 and 1 of the two regions separated by
the crack line and to the inner boundary Z ¼ Z0 along the crack. The mode shape functions in the
Z direction for regions (1) and (2) when l2 > ðmpÞ2 have the form

Y1mðZÞ ¼ A1m cosh bmZþ B1m sinh bmZþ C1m sin gmZþ D1m cos gmZ:

Y2mðZÞ ¼ A2m cosh bmZþ B2m sinh bmZþ C2m sin gmZþ D2m cos gmZ: ð18Þ

The boundary conditions at Z ¼ 0 and Z ¼ 1 can be expressed as

Y1mðZÞjZ¼0 ¼
@2Y1mðZÞ

@Z2

����
Z¼0

¼ 0; Y2mðZÞ jZ¼1 ¼
@2Y2mðZÞ

@Z2

����
Z¼1

¼ 0: ð19Þ

The application of the boundary conditions (19) to Eq. (18) yields the shape functions for the two
regions as

W1mðz; ZÞ ¼ fB1m sinh bmZþ C1m sin gmZg sinðmpzÞ; 0pZpZ0;

W2mðz; ZÞ ¼ fB2m sinh bmðZ� 1Þ þ C2m sin gmðZ� 1Þg sinðmpzÞ; Z0pZp1: ð20Þ
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The inner boundary conditions at the crack location Z ¼ Z0 are

W1 ¼ W2 jZ¼Z0 ; M1 ¼ M2 jZ¼Z0 ; V1 ¼ V2 jZ¼Z0 : ð21Þ

The above equations express the equality of deflections, bending moments and shear forces at the
two sides of the crack location, respectively.
Finally, the slope compatibility condition of the crack is

@w1

@Z
� y�

@w2

@Z

����
Z¼Z0

¼ 0: ð22Þ

By substituting Eqs. (20) into Eqs. (21) and (22) a set of homogeneous equations for the unknown
constants B1m; C1m; B2m and C2m is obtained. The vanishing determinant of the coefficient matrix
leads to the characteristic equation. Making use of this equation with an integer value of the mode
number m; i.e., m ¼ 1; the eigenfrequencies, on of the cracked plate are determined, for a specific
crack depth x and crack location Z0: The lowest eigenfrequency is assigned to n ¼ 1: The
eigenfunctions of the system determine the vibrational mode shape functions for the two regions
(1) and (2), within the arbitrary constant B1m in the form

W1ðz; ZÞ ¼ B1m sinh bmZþ
e3 þ e4

e5
sin gmZ

 �
sinðmpzÞ:

W2ðz; ZÞ ¼ B1m e1 sinh bmðZ� 1Þ þ e2
e3 þ e4

e5
sin gmðZ� 1Þ

 �
sinðmpzÞ; ð23Þ

where the parameters e1 � e5 are defined as

e1 ¼
sinh bmZ0

sinh bmðZ0 � 1Þ
; e2 ¼

sin gmZ0
sin gmðZ0 � 1Þ

;

e3 ¼ 2bmf
2l2½cosh bmZ� e1 cosh bmðZ0 � 1Þ�;

e4 ¼
6H

b
abbfb

2
m � f2nðmpÞ2g2 sinh bmZ0;

e5 ¼
6H

b
abbfb

2
m � f2nðmpÞ2gfg2m þ f2nðmpÞ2g sin gmZ0: ð24Þ

4. Wavelet application for cracked plate analysis

The existence of a crack in a structure results in a decrease in natural frequencies and changes
in the mode shapes of vibration. In that vein, simple methods have been developed for
crack identification in beam structures via natural frequency changes. In case of cracked
plates, however, even moderate cracks have a minor effect on natural frequencies [19,20]. This
fact makes a reliable crack identification based on natural frequency changes difficult. There-
fore, the application of wavelet analysis as crack detection tool in plate structures becomes
important.
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4.1. Determination of crack location

In this section the feasibility of the wavelet-based crack identification approach will be
investigated using simulated structural response data. For numerical simulations, the cracked
plate model described in the previous section is utilized.
The plate is considered to be simply supported at all four edges with an all-over crack at

Z0 ¼ 0:2 running parallel to one of its edges. The following dimensions and mechanical
characteristics are considered: a ¼ 0:2 m; b ¼ 0:3 m; H ¼ 0:004 m; E ¼ 200 GPa; n ¼ 0:3; r ¼
7860 kg=m3: The depth of the over-all crack is varied from 10% up to 50%.
The first and second modes of vibration are calculated from Eqs. (23) for m ¼ 1 and taking

o ¼ o1 and o2 respectively. Based on the mode shapes, response data of the plate displacement
along vertical lines at different locations are generated. This way, the problem becomes practically
one dimensional. A total number of 1001 points are available corresponding to an actual spatial
sampling distance of 0:3 mm: Data are normalized so that the maximum displacement value is
unity. The displacement response of the cracked plate against the coordinate Z along a vertical line
at z ¼ 0:5 is shown in Fig. 7.
It can be seen that the displacement data reveal no local features that directly indicate the

existence of a crack. The structural response data are analyzed using the continuous wavelet
transform. The continuous wavelet transform is preferred instead of the discrete version, as the
redundancy of information it provides is useful for analysis purposes. The wavelet transform is
implemented for scales 1 to 25 with the ‘‘symmetrical 4’’ as the analyzing wavelet. As explained
before, one cannot use a scale less than one because of the available resolution. On the other hand,
for scales over about 25 the singularity introduced by the crack cannot be considered isolated.
This last observation is not important for this study, but is of particular value for a case where
more than one crack on a plate has to be accurately localized. If two cracks appear at a distance d;
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then one should restrict the analysis to scales that the effective support of the wavelet is smaller
than the distance d; otherwise the damaged points merge together.
The results of the wavelet analysis are presented in Figs. 8 and 9 for scales 2, 5, 10 and 15. This

is the case of a 20% crack and it is obvious that the wavelet transform coefficients exhibit
maximum at point Z ¼ 0:2: This implies the presence of a singularity, but to be certain about that
one has to observe the trend of wavelet maxima at this point, as the scale decreases. From Figs. 10
and 11 it is clear that the absolute value of the wavelet maxima decreases in a regular manner as
the scale decreases. Ideally, it should tend to zero for zero scale, but as mentioned before one is

ARTICLE IN PRESS

0.1 0.3 0.5 0.7 0.9

-4

-2

0

2

 D
is

p
la

ce
m

en
t 

(x
 1

0-4
)

s = 2

s = 5

s = 10

s = 15

�

Fig. 8. Wavelet analysis of different scales based on the displacement response of the cracked plate in Fig. 7 (first mode

of vibration).

0.1 0.3 0.5 0.7 0.9
 -2

-1

0

1

D
is

p
la

ce
m

en
t 

(x
 1

0-3
)

s = 2

s = 5

s = 10

s = 15

�

Fig. 9. Wavelet analysis of different scales based on the displacement response of the cracked plate in Fig. 7 (second

mode of vibration).
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forced to draw conclusions from the trend of coefficients to the minimum scale of 1. The second
mode of vibration produces higher values for the wavelet coefficients, which means that it is more
sensitive for crack detection. All cases investigated presented more or less the same picture with
advanced crack depth leading to higher coefficients.
The absence of coefficients of significant value in Figs. 10 and 11 at any other location away

from the crack is characteristic. This is attributed to the fact that the analyzed data stem from
theoretical computations and hence contain no noise or measurement errors. In a real experiment,
however, noise is expected to corrupt the data. It is known [27] that the wavelet transform
coefficients behave in a completely different manner when they stem from noise disturbances. It
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Fig. 10. Three-dimensional plot of the wavelet transform showing the trend of wavelet modulus maxima at crack

location (first mode).

Fig. 11. Three-dimensional plot of the wavelet transform showing the trend of wavelet modulus maxima at crack

location (second mode).
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has been shown [30] that random noise is characterized by negative Hoelder exponents and so the
wavelet modulus maxima increase as the scale decreases. This observation provides a way to
discriminate singular points from noise. The same procedure was repeated in case of displacement
response distribution along lines parallel to z direction, i.e., parallel to the crack. In this case, the
wavelet analysis reveals no sudden changes and hence the crack remains undetected.
In conclusion, the analytical examples demonstrate that a crack induces certain perturbation

features in the total structural response along lines perpendicular to the crack. It appears that
these local features can be easily revealed by analyzing the spatial response with wavelet
transform. Therefore, the location of an existing crack can be easily and accurately determined
using wavelet analysis.

4.2. Estimation of crack depth

As already mentioned. Eq. (6) can be used to relate crack size to the coefficients of the wavelet
transform via the constant A: For that purpose, one has to examine the modulus maxima lines of
the wavelet transform.
For the plate considered in the previous section, Fig. 12 shows a plot of the logarithm of the

wavelet coefficients versus scale for response data corresponding to the first mode of vibration.
The location of the crack is fixed ðZ ¼ 0:2Þ while its depth is varied from 10% up to 50%.
The wavelet coefficients are parallel lines of constant slope, or in other words of constant

exponent h: The Hoelder exponent for all cases has a constant value equal to 1. This means that
the mode function is one time differentiable at the location of the crack. The constant value of the
Hoelder exponent implies singularities of the same type caused by the same physical cause, which
in our case is the existence of a crack. Similar results are obtained from the analysis of response
data corresponding to the second mode of vibration (Fig. 13). These results validate to an extent
the fact that the Hoelder exponent characterizes the type of the defect, while constant A depends
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Fig. 12. Wavelet maxima coefficients versus scale for different crack depths (first mode).
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on the size of the defect. In both cases the intensity factor A increases with increasing depth. This
suggests a possibility to correlate the crack size to the constant A:
In order to use constant A for quantitative crack sizing, a relation between A and crack size

needs to be established. For that purpose, the variation of constant A with crack size has been
systematically investigated. Using the results shown in Figs. 12 and 13 (wavelet coefficients versus
scale for fixed crack location and different crack size) the coefficient A has been evaluated for
different crack depths by linear interpolation.
Fig. 14 presents the intensity factor A versus crack depth for the first and second mode of

vibration. It can be seen that in both cases the intensity factor increases with increasing crack
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depth following a second order polynomial law. Therefore, Fig. 14 can be used for estimating the
relative crack depth for a given intensity factor. For the plate under consideration, the calculated
value of the intensity factor A ¼ 1:9	 10�5 leads to a value of 20% for the relative crack depth in
agreement with the assumed model.

5. Conclusions

A method for crack detection in cracked plates based on wavelet analysis has been presented.
The viability of the method has been demonstrated by analyzing the vibration modes of a plate
with an all-over part-through crack parallel to one edge of the plate using the ‘‘symmetrical 4’’
wavelet.
The location of the crack was determined by the sudden changes in the spatial response of the

transformed signal at the site of the crack. Such local changes are not obvious from the response
data they are, however, discernible as singularities when using wavelet analysis.
For the estimation of the relative crack depth an intensity factor was established. It relates the

size of the crack to the corresponding wavelet coefficients. It was shown that the intensity factor
changes with crack depth according to a second order polynomial law and therefore, can be used
as an indicator for crack extent.
In conclusion, the presented results provide a foundation for using wavelelet analysis as an

efficient crack detection tool in plate structures. The advantage of using wavelet analysis is that
local features in a displacement response signal to be analyzed picks up the perturbations caused
by the presence of the crack. Further work is needed, however, to advance crack detection in
plates using wavelet analysis. A key issue is the spatial resolution and accuracy of the
measurements. Therefore, actual response data are needed to demonstrate the practicality of the
method. Furthermore, a detailed theoretical correlation of the intensity factor to the physical
crack size would enhance the reliability and accuracy of the proposed method. Identification of
cracks of finite length in plates is also a problem of practical interest to be investigated. Work is
already under way on the above mentioned issues and will be the subject of a future publication.
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